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Abstract. We report numerical simulation results for free-vortex lifetimes in the critical region
of classical two-dimensional easy-plane ferro- and antiferromagnets having three-component
order parameters. The fluctuations in the vortex number density in a spin dynamics simulation
were used to estimate the lifetimes. The observed lifetimes are of the same order of magnitude
but smaller than the characteristic timescale above which a phenomenological ideal vortex-gas
theory that has been used to account for the central peak in the dynamic structure factorSαα(q, ω)
is expected to be valid. For strong anisotropy, where the vortices are in-plane, the free vortex
lifetimes for ferromagnets and antiferromagnets are the same, while for weak anisotropy, where
the vortices have non-zero out-of-easy-plane components, the lifetimes in antiferromagnets are
smaller than in ferromagnets. The dependence of the free-vortex and total vortex densities on
the size dependent correlation length in the critical region is examined. We also determined the
lifetimes of vortex–antivortex pairs forT = TKT and well belowTKT. The observed timescales
are very short, and the observed pair densities are extremely small. These results suggest that
pair creation and annihilation are unlikely to play any role in the central peak inSxx(q, ω)
observed in computer simulations for the ferromagnetic model forT 6 TKT.

1. Introduction

The interpretation of the central peak in the dynamic structure factorSαα(q, ω) in easy-
plane layered ferromagnets (FM) and antiferromagnets (AFM) is currently based on the
phenomenological theory developed by Mertenset al [1–7]. The central peak is observed
for T > TKT (TKT is the Kosterlitz–Thouless transition temperature) and the theory accounts
for it within the frame of a dilute gas of free vortices effectively assuming infinite free-vortex
lifetime. It is of importance to determine the free-vortex lifetime to find out the interval
of applicability of the theory as well as to understand the timescale of the processes which
account for the finite lifetime. We have developed a method to calculate the vortex lifetime
and we present here our results obtained from combined cluster Monte Carlo (MC) and spin
dynamics simulations. We believe that these are the first reported free-vortex lifetimes in
AFM for the system Hamiltonian we have considered.

The intensity and width of the central peak predicted by the dilute-vortex-gas theory
depend on the free vortex densityNv and the rms vortex velocitȳu. A free vortex is
assumed to exist longer than a characteristic observation time

1/γ = 2ξ/
√
πū (1)

whereξ is the correlation length. It is assumed that the vortices have a Maxwellian velocity
distribution. If this theory is valid, it could, in principle, allow one to determine the average
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free vortex velocityū and the correlation lengthξ at a given temperature by experimentally
measuring the shape of the central peak, knowing the strength of the Heisenberg exchange
interaction for the magnetic material.

The FM and AFM static properties on a square lattice (or other bi-partite lattice) are
identical (the spins on one of the sublattices in the AFM are inverted when compared with
the spins in the FM) while their dynamic properties differ [8]. In particular, the out-of-
plane tilting of spins near the core of a vortex produces a non-zero topological charge
(or gyrovector [9, 10]) for vortices in the FM model. The gyrovector plays an important
role in determining how the motion of an individual vortex is influenced by effective
fields due to neighbouring vortices, and it appears together with an effective mass in a
collective coordinate equation that describes the motion of a vortex centre [11]. However,
the gyrovector is always zero for vortices in the AFM model, and, the effective mass for
vortices in the AFM model is much smaller than for vortices in the FM model [12]. For
these reasons we expect that the FM and AFM models could have quite different vortex
lifetimes, and therefore contrast the lifetimes measured for the AFM model with those we
have determined previously for the FM model [13].

2. The model

The Hamiltonian of the model is

H = −J
∑
〈i,j〉
(Sxi S

x
j + Syi Syj + λSzi Szj ) (2)

where the classical spinsSi = (Sxi , S
y

i , S
z
i ) are vectors on the unit sphereS2, the sum

is over nearest-neighbour sites of a square lattice, the easy-plane anisotropy parameterλ

varies in the interval 06 λ < 1, andJ > 0 for FM andJ < 0 for AFM. We assume that
J has energy units, time is measured in units of ¯h/J and temperature inJ/kB ; the spins
are dimensionless.

The static critical behaviour of this model is well described by the extensively studied
classicalXY model (the two-dimensionalO(2) model) but because of the possibility for spin
fluctuations in one more degree of freedom (the out-of-planeSz fluctuations) the properties
of theXY model will be observed at lower temperatures here.

Long-range order cannot exist for any non-zero temperature in these models [14],
but Berezinskii [15] showed the existence of a phase transition which was understood
by Kosterlitz and Thouless [16] to occur through unbinding of pairs of non-linear
topological excitations–vortices. The critical properties of theXY model [17] as well
as the low-temperature phase are of considerable interest to the physics of low-dimensional
magnetism because there are a number of materials which are effectively considered
as two-dimensional magnetic systems [18] and the Hamiltonian (2) is the simplest
model with which to study their properties. These are layered crystals with intralayer
exchange interaction much greater than their interlayer exchange (more than two or three
orders of magnitude greater) and there are observed both ferromagnets [19–22] (e.g.,
K2CuF4, (CH3NH3)2CuCl4, (C2H5NH3)2CuCl4, Rb2CrCl4) and antiferromagnets [23–25]
(like BaNi2(PO4)2, BaCo2(AsO4)2). The intralayer exchange interaction is more than 10−3

orders of magnitude smaller than the intralayer exchange in the graphite-intercalated CoCl2

which has been studied in detail by Wiesleret al [26]. There are magnetic lipid monolayers
[27], for example, the compound Mn(C18H35O2)2, which are true two-dimensional magnets.

When the anisotropy parameterλ is less than a critical value,λc which is lattice
dependent [28], only in-plane static vortex spin configurations (〈Sz〉 = 0) are stable, while
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for λ > λc only static vortices with non-zero out-of-plane (〈Sz〉 6= 0) spin components are
stable. The critical anisotropy parameterλc has recently been determined [29] with good
precision and for the square latticeλc ≈ 0.7034.

3. Dynamics

The differences in dynamical properties of FM against AFM not only appear in the vortex
properties, but also in the spin wave–vortex interaction and the spin waves alone. The spin–
wave excitations have a single branch for FM while there are two branches for AFM owing
to the two different spin sublattices. The spin waves are either in-plane or out-of-plane
depending on the value ofλ. Ivanovet al [30] found a localized mode for the out-of-plane
vortex in AFM which appears in the gap between the two spin-wave branches. Wysinet al
[31] have also shown that even for the in-plane vortices in the AFM model, this localized
mode is still present. For the FM model, in contrast, only quasi-local spin–wave modes
appear on a vortex (where theSz component of the mode is localized near the vortex core
while theSx, Sy components of the mode are extended).

In the ideal vortex-gas theory [1–7], the motion of free vortices in a temperature interval
just aboveTKT is assumed ballistic and leads to central peaks in both in-planeSxx(q, ω)

(Sxx = Syy owing to the symmetry of the Hamiltonian) and out-of-planeSzz(q, ω) dynamic
structure factors, whereSαα(q, ω) (α = x, y, z) is the space–time Fourier transformation of
the correlation function〈Sα(r, t)Sα(0, 0)〉. The central peak (CP) of the in-plane dynamic
structure factor is predicted to have a squared Lorentzian shape

Sxx(q, ω) = S2γ 3ξ2

2π [ω2+ γ 2(1+ (ξq∗)2)]2
(3)

whereγ is defined in (1). The CP is located atq∗ = (0, 0) for FM (q∗ ≡ q) and at the
Bragg pointK = (π, π) for AFM (q∗ ≡K−q). A weaker CP is predicted for the out-of-
plane dynamic structure factor for anyλ, owing to correlations caused by vortex motion.
It is located atq = (0, 0) for both FM and AFM. Its intensity is proportional to the free
vortex densityNv and has Gaussian shape

Szz(q, ω) = Nvū

32f 2
λ J

2
√
πq

exp(−(ω/ūq)2) (4)

wherefλ = 1− λ for FM and 1+ λ for AFM. For λ > λc, the out-of-plane vortex spin
asymptotic behaviour is known to beSz(r) ∼ √rv/r exp(−r/rv), whererv =

√
λ/(1− λ)/2

is considered as the vortex core radius andr is the distance from the vortex centre. This
asymptotic form is used to calculateSzz(q, ω) for both FM [2] and AFM [6, 7] leading to
an additional CPonly for λ > λc with Gaussian shape

Szz(q∗, ω) ∼ Nvū

q∗3 exp(−(ω/ūq∗)2) (5)

and againq∗ ≡ q for FM and q∗ ≡ K − q for AFM. By measuring the width and the
integrated intensity of the CP one can determineū andξ and compare them with independent
theoretical results. We compare the characteristic times 1/γ obtained in this way with our
results on the vortex lifetime.

Thus, we expect that vortices in FM and AFM forλ < λc have quite similar dynamics
(and similar lifetimes), which is reflected particularly in their similar in-plane correlations.
However, the non-zero gyrovector for FM vortices is present forλ > λc. This is an
additional term in the vortex equation of motion for the FM case, which is absent for
AFMs. Furthermore, the effective vortex mass of AFM vortices has been estimated to
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be smaller than for FM vortices [12] only forλ > λc. Because of these differences, we
calculate the vortex lifetime for bothλ < λc and forλ > λc, with the expectation that larger
differences should occur in the latter case.

In recent numerical simulations [32], CP has been observed inSxx(q, ω) for T 6 TKT

andλ = 0. It is not clear currently what causes the CP forT 6 TKT. For these temperatures,
the dominant excitations are spin waves and the vortices are bound in pairs with opposite
vorticities. The vortex pairs should only renormalize the shape of the spin-wave peaks and
should not lead to additional peaks as do the free vortices aboveTKT. Nevertheless, we
have calculated and checked the lifetime of vortex pairs belowTKT. We found that the
observed pair lifetime is a very short timescale to be the relevant effect for the observed
CP at these temperatures.

4. The simulation

We simulate a system of classical spins (three-component unit vectors) on a square lattice
with periodic boundary conditions andL×L number of sites, for sizesL 6 256. First, we
run Monte Carlo (MC) simulations to obtain initial equilibrium configurations (IC) and to
calculate the correlation length and vortex densities. The obtained ICs are then evolved in
time using a fourth-order Runge–Kutta method (see [33] for a particular implementation of
the Runge–Kutta method) to solve the Landau–Lifshitz equations of motion

dSi
dt
= Si ×

(
− δH
δSi

)
(6)

where

− δH
δSi
= J

∑
〈j (i)〉

(Sxj x̂+ Syj ŷ + λSzj ẑ) (7)

x̂, ŷ and ẑ are unit vectors along the coordinate system axes. The sum is over the nearest-
neighbour sites of the sitei.

We used a combination of Wolff’s one cluster algorithm [34] (for updating of the in-plane
spin componentsSxi and Syi ), Metropolis’ algorithm [35], and the over-relaxed algorithm
[36] to update the spins in the MC part of the simulations. Each Monte Carlo step (MCS)
through the system consists of three single-cluster updates, three Metropolis sweeps, and
three over-relaxed sweeps. The use of Wolff’s algorithm isessentialfor reducing critical
slowing down. The over-relaxed move on a classical spin consists of rotating the spin
around the direction of the local field owing to its nearest-neighbour spins (assuming no
external magnetic field) at an angle ofπ , i.e. if ĥ = hloc/|hloc|, then

snew = 2(ĥ · sold)ĥ− sold . (8)

The move is microcanonical and it also reduces critical slowing down even though it is a
local move. The Metropolis algorithm is needed to satisfy the ergodicity of the MCS for the
Hamiltonian we study. The first 1000 to 5000 MCS were used for equilibration of the system
and IC were written after each bin consisting of 2000 to 10 000 MCS. Between 25 to 100
ICs were produced for the spin dynamics simulations. The calculation of the correlation
length and vortex density is from averages over 20 or 25 bins with measurements after
each MCS and all estimated statistical errors are equal to the standard deviation of the bin
averages.
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The correlation length is determined by measuring [37–39]

ξL = 1

q

√
G(0)/G(q)− 1 (9)

G(q) = 1

L2

〈∣∣∣∣∑
ri

exp(iq · ri )S⊥i
∣∣∣∣2〉 (10)

whereS⊥i = (Sxi , Syi ) is the in-plane spin vector. The wavevectorq = (2π/L, 0) is used,
andri is the radius-vector of theith lattice site. The correlation lengthξL obtained from
(9) approaches the exact value asO(q4) approaches zero when increasing the linear size of
the systemL [38, 40]. The finite-size effects for the classicalXY model are small [41], as
a rule of thumb, whenL/ξL > 6.

Another method used to determine the correlation length [41–44] in theXY model from
simulations on a lattice is from a fit of the zero spatial momentum two-point correlation
function to

0(yi) ≡
〈∑
xi ,xj

S⊥(xi ,yi ) · S
⊥
(xj ,0)

〉
= C cosh((L/2− yi)/ξ) (11)

the summation is over thex-coordinates of the lattice sites. The advantage of using (9) to
calculate the correlation length is that it does not require fitting. We have also calculated
0(yi) for several temperature values and the comparison between the correlation lengths
obtained from (9) and from [44]

ξ(yi) = ln(0(yi)/0(yi − 1)) (12)

at saturation (neglecting the contributions owing to the periodic boundary conditions in
(12)), shows that the two results agree within 2.5%.

5. Results

5.1. Free vortices and correlation length

We consider in this section how free vortices are determined and the associated difficulties
when applied to simulations on a lattice. For the calculation of the vortex lifetime we use a
method to locate ‘free’ vortices [13] which is not directly related to the correlation length and
therefore it isvery importantto understand how it relates to a method directly usingξ(T )

as the length scale to distinguish free from bound vortices. This requires the calculation of
the correlation length for different values ofT andλ which we present later. The results for
the correlation length by themselves should be of general interest, in particular, the values
of ξ(T ) for λ = 0.9 may not be reported elsewhere.

According to the Kosterlitz and Thouless theory [16], atTKT vortex–antivortex pairs
start to unbind and free vortices are formed forT > TKT. Treating the core radius of a
vortex as a variational parameter and minimizing the vortex energy with respect to it, one
can show that the vortex core radius is proportional to the correlation lengthξ(T ). Thus,
ξ(T ) sets a length scale below which vortex–antivortex pairs can still be considered bound
while above it the vortices are free. The average free vortex density becomes

nv(T ) ∼ 1/ξ2(T ) (13)

and there are arguments [8] that the exact dependence isnv(T ) = 1/(4ξ2(T )).
This suggests the following approach in a search for free vortices on a lattice. A vortex

is considered free, provided the minimum distance from its centre to a nearest-neighbour
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vortex is greater thanξ(T ). If the distance is less thanξ(T ), the corresponding two vortices
are marked as bound.

There are two related problems which render this approach too CPU intensive currently.
First, the simulations are on a lattice and a vortex centre can be at any point inside a plaquette
(1× 1 square on the lattice with spins located at its corners), where the vortex has been
found. We use Tobochnik and Chester [42] method, which accounts correctly for measuring
spin in-plane angles mod(2π), to determine which plaquettes contain vortices. Fitting to the
known vortex solution for the spinSi = (cosθi cosφi, cosθi sinφi, sinθi), with in-plane
angle

φi = q tan−1

(
yi − yv
xi − xv

)
(14)

whereq = ±1 is the vorticity and(xv, yv) are the coordinates of the centre of the vortex
(treated as fitting parameters), allows the determination of the vortex centre location but
creates the second problem. The vortex positions and their free/bound status have to be
determined at each time step during the spin dynamics part of the simulations in order
to determine the free vortex lifetime. The fitting procedure for precise vortex positioning
increases the CPU time by more than one order of magnitude (and close to two) which
makes the simulations impractically long for large enough lattice sizes (in order to have
negligible finite size effects). In addition, using the correlation length to determine the free
vortices forξ(T ) & 5.0 gives approximately no free vortices. For temperatures such that
ξ(T ) & 5.0 the vortices are still distributed in clusters and the correlation length is usually
greater than the minimum distance between nearest neighbours of vortices.

Therefore, we followed our previous approach [13] for locating free vortices. We take
the vortex positions as the centres of the plaquettes, which eliminates the most CPU intensive
task of precisely fitting their positions. We also use a fixed length scale to determine the
free/bound vortex status in the temperature interval we study. This length scale is set equal
to the next nearest-neighbour distance, i.e.

√
2 lattice constants on the square lattice. A

bound vortex will have a nearest-neighbour vortex at a distance of one lattice constant or√
2 while a free vortex may have its nearest-neighbour vortex at a distance greater or equal

to two lattice constants. This method to determine the free vortices has already been used
by Gupta and Baillie [44] to measure the vortex density.

We determined the correlation lengths and vortex densities for the temperature intervals
we studied and two values of the easy-plane anisotropy parameter (λ = 0.0 andλ = 0.9)
in order to estimate the applicability of the fixed-length (

√
2) approach to determine the

free vortices. With the critical temperatures estimated asTKT(λ = 0.0) ≈ 0.70 and
TKT(λ = 0.9) ≈ 0.63, we studied the range 0.756 T 6 1.1 for λ = 0.0 and 0.76 T 6 1.05
for λ = 0.9 at intervals of1T = 0.05. The critical temperature was estimated using the
reduced fourth-order cumulant [45]. ForT lower than these intervals, the free-vortex density
is too low to obtain good statistics. The results for the correlation length are presented in
table 1 forλ = 0.0 andλ = 0.9. We expect that these values ofξL have reached saturation
and should be approximately equal to the values ofξ in the thermodynamic limit with the
possible exception of the data point atT = 0.75 for λ = 0.0 and atT = 0.7 for λ = 0.9.

These values of the correlation length suggest that the use of fixed length equal to
√

2 to
determine the free vortices, instead of the correlation length, will overestimate their number
for 0.756 T 6 0.85, λ = 0.0 and 0.76 T 6 0.8, λ = 0.9. In these temperature intervals,
a vortex has its nearest-neighbour vortex at a distance smaller thanξ(T ), for most of the
vortices, and the resulting free vortex density will be one or more orders of magnitude less
than the theoretical result (13). For 0.96 T 6 1.1, λ = 0.0 and 0.856 T 6 1.05,λ = 0.9,
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Table 1. Results for the correlation lengthξL for the temperatures, lattice sizesL × L, and
anisotropy parameter valuesλ = 0, 0.9 considered. The correlation length is in lattice constant
units and temperature inJ/kB .

Temp. L ξλ=0.0
L ξλ=0.9

L

0.7 256 25.88± 0.96
128 25.48± 0.21

0.75 256 51.80± 0.5
64 9.03± 0.06

0.8 128 11.62± 0.36
32 5.15± 0.03

0.85 64 6.09± 0.20
32 6.08± 0.02 3.58± 0.03

0.9 32 3.95± 0.02 2.77± 0.02
0.95 32 2.93± 0.02 2.29± 0.03
1.0 32 2.35± 0.029 1.88± 0.03
1.05 32 1.95± 0.028 1.69± 0.04
1.1 32 1.63± 0.033

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
(1/ξL)

2

0.000

0.025

0.050

0.075

0.100

0.125

0.150

n υ

λ = 0.0
λ = 0.9

(b) nυ(total)

(a) nυ(free)

Figure 1. The total and free vortex densities against 1/ξ2
L for λ = 0.0 and 0.9. The errors are

smaller than the size of the data point symbols.

the average number of free vortices should be approximately the same when measured
by using the correlation length or the

√
2 fixed-length scale. The overestimation of the

free vortex number very close toTKT will also lead to overestimation of the free vortex
lifetime for these values ofT (see the next subsection). However, thisdoes not change
the conclusions regarding the magnitude of the lifetime with respect to the ideal vortex gas
theory.

We also calculated the dependence of the average free and total vortex densities on
1/ξ2

L to study their spatial distribution. The results for the free and total vortex densities
are shown in figure 1 forλ = 0.0 and 0.9. We do not obtain the straight line dependence of
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(13) in the lower temperature range mainly because of the overestimation of the free vortex
number in this range. Nevertheless, the shape of these curves shows two slopes and tends
to saturation in the upper temperature limit of these intervals, i.e. smallξs, which is more
clearly seen if we include more data points at higherT s. At these temperatures, the vortex
motion is already diffusive and we are out of the range of ballistic motion assumed in the
free-vortex gas theory.

Calculations of the vortex radial pair distribution functions shows that just aboveTKT

the vortices are clustered with very few isolated ones (the temperaturesT = 0.75, 0.8
for λ = 0.0 andT = 0.7, 0.75 for λ = 0.9). Increasing the temperature decreases the
number of vortices in the clusters and for the smallerξs in figure 1, higherT s, the vortices
are approximately homogeneously distributed on the lattice. This behaviour is similarly
observed in the plane rotator model [42, 44].

5.2. Vortex lifetime

The free vortex lifetime is calculated using a statistical method [13] during the spin dynamics
part of the simulations. The number of free vortices is counted at each time step dt of the
time evolution and the times when this number decreases are saved in order to determine
the time intervals1ti between consecutive decreases of the number of free vortices. Each
of these intervals represents a data point for the calculation of the free vortex lifetime from
the following

τi = Ni1ti

|1Ni | . (15)

The factorNi/|1Ni | (Ni is the number of free vortices detected in the system just before
the last time step and|1Ni | is the change in the free vortex number before and after the
last dt) accounts statistically for the possibility that any of the free vortices could have
annihilated. The division by|1Ni | accounts for the case when one time step evolution of
the system leads to a decrease ofNi by more than one free vortex.

There are two requirements for the applicability of this method. The system has to be
large enough in order to have a large number of free vortices for better statistics when using
(15) and the time step dt has to be much smaller than the characteristic time of decay1ti ,
which helps to ensure that in most cases|1Ni | = 1. The time step dt has to be decreased
when increasingT or L since then the number of free vortices fluctuates on a shorter time-
scale. The requirement to monitor the number of free vortices at each time step is the most
CPU intensive task in the spin dynamics part of the simulations and currently makes them
excessively long if we employ fitting to determine the precise vortex position as mentioned
above. We have used time steps in the interval 1.5× 10−4 6 dt 6 1.0× 10−3 depending
on T andL and trying to meet the condition|1Ni | 6 2.

Each Monte Carlo IC is evolved in time up totmax = 100 by numerical integration of
the equations of motion, (6), using a fourth-order Runge–Kuta scheme. During the time
evolution of the system,τis are calculated in order to determine an average lifetime for each
IC and its error. The lifetimes for the different ICs and their errors are then additionally
averaged to obtain the final value for the lifetime and its error for given temperature.

The results for FM and AFM and different lattice sizesL are shown in figure 2 for
λ = 0.0 and in figure 3 forλ = 0.9. The measured free vortex lifetimes for AFM and FM,
λ = 0.0, vary between 1.03 for T = 0.75 and 0.63 for T = 1.1. Size effects are noticed for
L = 32, not plotted here [13], whenT = 0.75. In this case the number of free vortices is
very small and (15) is not reliable for statistical analysis. Note that the measured lifetimes
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0.7 0.8 0.9 1.0 1.1
T

0.55

0.65

0.75

0.85

0.95

1.05

τ fr
ee

64x64, FM*
64x64, FM 
80x80, FM*
100x100, FM*
64x64, AFM

λ = 0.0

Figure 2. Free vortex lifetime against temperature forλ = 0.0, FM, AFM, and several lattice
sizesL. The FM* marked cases refer to previous simulations using only Metropoliset al [35]
algorithm in the MC part of the simulations.

0.65 0.75 0.85 0.95 1.05
T

0.3

0.4

0.5

0.6

0.7

τ fr
ee

32x32, FM
64x64, FM
32x32, AFM
64x64, AFM 

λ = 0.9

Figure 3. Free vortex lifetime against temperature forλ = 0.9, FM, AFM, and the lattice sizes
L indicated.

for 0.756 T 6 0.85 should be considered asan upper limit for the free vortex lifetime in
this temperature interval because of the overestimation of the number of free vortices, which
leads to greater values ofNi and thus ofτi calculated from (15). The free vortex lifetimes
are the same, within the error bars, for FM and AFM in the case ofλ = 0.0, figure 2,
regardless of the different spin dynamics in both cases. The picture is quite different for
λ > λc as we see in figure 3 forλ = 0.9. The observed lifetimes for AFM are smaller than
those for FM and this can be understood by the increased mobility of vortices and lower
mass in AFM compared to FM [12].
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These measured lifetimes are to be compared with the characteristic timescale (1) in
the ideal vortex gas theory [1]. These times are listed in table 2 for set of temperatures
from the published data on the correlation length and the vortex rms velocity obtained from
fitting the width and its integrated intensity of the observed central peak inSxx(q, ω) in
simulations. The comparison of our results on the lifetime with the timescales in table 2
shows that the lifetime is smaller than the characteristic lifetimes as much as one order of
magnitude for the higher temperatures listed in table 2 while our results on the correlation
length forλ = 0.0 (table 1) are betweenξ1 andξ2 (see table 2) which are obtained from the
central peak. Even though the lifetimes we determined are shorter than the characteristic
times from the ideal-vortex-gas theory for the temperatures listed in table 2, we cannot
rule out the validity of the theory to describe the spin dynamics because it does predict
correlation lengths slightly smaller or larger, depending on which quantity one fits, than
the correlation length we determine directly and one has yet to determine the rms vortex
velocity ū independently. We cannot currently measureū directly from the simulations but
visualization of the vortex positions at each time step shows that a free vortex almost never
travels more than one lattice constant before it either becomes bound by moving closer to
other vortices, or another vortex moves close to it, or vortex–antivortex pair creation occurs
close to it. Our results on the vortex densities and clustering forT = TKT + 0 and the
short vortex lifetime suggest that they may need be incorporated in the theory rather than
assuming infinite vortex lifetime.

Table 2. Characteristic times 1/γi = 2ξi/
√
πū, i = 1, 2, in the ideal vortex gas theory from

published data. The rms vortex velocityū and the correlation lengthξ2 have been obtained from
fitting the width ofSxx(q, ω) andξ1 from fitting the integrated intensity [1, 3, 4].

Temp. ū ξ1 ξ2 1/γ1 1/γ2

FM, λ = 0.0, [1]
0.90 0.84 4.4 4.8 5.91 6.45
1.00 0.91 2.4 3.0 2.97 3.72
1.10 0.91 2.1 1.9 2.60 2.36

AFM, λ = 0.0, [4]
0.85 1.17 4.6 9.02 4.44 8.70
0.90 0.96 3.69 5.28 4.34 6.21
0.95 1.05 2.43 4.35 2.61 4.67
1.00 1.05 2.09 3.28 2.24 3.52
1.05 1.13 1.54 3.17 1.53 3.16

FM, λ = 0.8, [3]
0.85 0.39 2.80 6.60 8.10 19.09
0.90 0.47 2.03 9.53 4.87 22.88
0.95 0.43 1.72 4.32 4.51 11.33

AFM, λ = 0.8, [3]
0.85 1.23 3.29 6.87 3.08 6.30
0.90 1.05 2.25 3.74 2.42 4.01
1.00 0.93 1.56 2.26 1.89 2.74

Costa and Costa [46] have stated that it may be necessary to consider other processes
or theoretical descriptions for the cause of the CP inSxx(q, ω), in addition to the ideal gas
theory. In particular, they have suggested that vortex pair creation–annihilation events could
be the processes responsible for the CP. Since there is presently no theory or phenomenology
that leads to any quantitative or even qualitative predictions, we have no way to answer
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this question forT > TKT. However, forT 6 TKT Evertz and Landau [32] have made
high-precision spin dynamics simulations for the FM model withλ = 0. There they also
found a CP inSxx(q, ω), as well as other interesting unexplained features for frequencies
below the spin-wave peak. This case is very interesting, because forT 6 TKT the free-
vortex density is approximately zero, whereas there can be a much larger bound vortex pair
density. Thus we can ask whether in this case pair creation and annihilation events may be
considered to cause the observed CP. This question can be roughly answered by determining
the vortex–antivortex pair lifetimeτpair . If annihilation–creation events are responsible for
the observed CP, then the width of the CP should be of the order ofτ−1

pair .
Our method to determine the free vortex lifetime is directly applicable for calculation

of vortex–antivortex pair lifetime forT 6 TKT. The pair lifetime is determined also from
(15) withNi substituted by the total number of vortices and antivortices in the systemNtot
and |1Ni | by |1Ntot |. ThenNtot/|1Ntot | will correctly be the number of pairs before an
event of pair annihilation is observed, provided the time step dt is small enough and in a
process of annihilationNtot decreases only by a vortex–antivortex pair (|1Ntot | = 2). We
calculated the pair lifetime atTKT (T = 0.7) and well below it atT = 0.4 with λ = 0.0.
The lifetimes determined areτpair = 0.487(9) and 0.39(13), respectively, withL = 64
and 128. The average vortex pair densities for these two simulations are 2.4(2) × 10−5

for T = 0.4, L = 128, and 6.9(4) × 10−3 for T = 0.7, L = 64. The pair lifetime
for T = 0.4 may show size dependence because of the very low vortex pair density for
lifetime estimation with the linear lattice size equal toL = 128. The timescale of these
excitations gives approximately two orders of magnitude higher frequency (1/τpair = 2.04
and 2.56 for T = 0.7, 0.4) than the observed frequency width [32], approximately 0.02
and 0.01, of the central peak at these temperatures. This rules out the explanation of
the reported central peak forT 6 TKT only by the vortex pair creation and annihilation
excitations.

6. Conclusions

We carried out combined cluster Monte Carlo and spin dynamics simulations on classical
two-dimensional easy-plane ferromagnets and antiferromagnets for two values of the
easy-plane strength. The correlation length and vortex densities were calculated in the
MC simulations and their implications in the search for free vortices considered. The
lifetime of free vortices and vortex–antivortex pairs were calculated in the spin dynamics
simulations by averaging over the equilibrium spin configurations supplied by the Monte
Carlo runs.

The free vortex lifetime is of the same order of magnitude but smaller than the
characteristic timescale of the ideal vortex gas theory forλ = 0.0 andTKT < T < 0.85.
This result does not rule out the validity of the theory at least in this interval before we
have a direct way to determine the average vortex velocity. For higher temperatures and
λ = 0.9, the lifetime becomes smaller than the characteristic time by approximately one
order of magnitude. The free vortex lifetime in FM is greater than in AFM forλ = 0.9 most
likely due to the greater vortex mass in FM compared to AFM and thus lower mobility.
For λ = 0.0, the lifetimes overlap for FM and AFM within the error bars.

The vortex–antivortex pair lifetimes atT = TKT and T = 0.4 are approximately two
orders of magnitude smaller than the timescale of the observed central peak atT 6 TKT.
This suggests that the pair creation and annihilation excitations alone cannot be the reason
for the central peak.



7464 D A Dimitrov and G M Wysin

Acknowledgments

This work was supported by NSF grants DMR—9412300, CDA-9724289, and by
NSF/CNPq International grant INT—9502781. GMW also thanks FAPEMIG (Brazil) for a
grant for Visiting Researchers while at Universidade Federal de Minas Gerais, Brazil, where
a part of this work was performed.

References

[1] Mertens F G, Bishop A R, Wysin G M and Kawabata C 1987Phys. Rev. Lett.59 117
Mertens F G, Bishop A R, Wysin G M and Kawabata C 1989Phys. Rev.B 39 591
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